Деформационные швы

Деформационный шов предназначен для уменьшения нагрузок на элементы конструкций здания, в частности кровли, в местах возможных деформаций, возникающих при колебании температуры воздуха, сейсмических явлениях, неравномерной осадки грунта и других воздействий, способных вызвать опасные собственные нагрузки, снижающие несущую способность элементов здания или сооружения. Представляет собой своего рода разрез в конструкции здания, разделяющий его на отдельные элементы и, тем самым, придающий конструкции определенную степень упругости.

Причины возникновения деформации конструкций

Для оценки деформаций в сооружении, прежде всего, необходимо рассмотреть основные причины их возникновения.

Известно, что основными причинами проявления деформаций в сооружении являются нагрузки и воздействия (далее «нагрузки»), классификация которых подробно изложена в нормативных документах — СНиП 2.01.07-85* «Нагрузки и воздействия».

Согласно классификации СНиП, основным критерием подразделения нагрузок является продолжительность их действия, в соответствии с которой различают постоянные и временные, в т.ч. длительные, кратковременные и особые нагрузки.

Но на практике, в дополнение к существующей классификации, следует ввести еще один уточняющий критерий — кратность действия нагрузок. Тогда все виды нагрузок можно подразделить на две условные группы — нагрузки однократного действия и нагрузки многократного, циклического действия. Такая классификация, применительно к конструктивным решениям по обустройству деформационных швов, имеет ряд преимуществ:

  • исходные параметры деформационного шва определяются по величине и сочетанию однократных нагрузок;
  • эксплуатационные параметры деформационного шва подбираются в зависимости от интенсивности воздействия на элементы конструкции многократных нагрузок;
  • учитывается возможность необратимых изменений в конструкциях от однократных нагрузок.

Однократные нагрузки воздействуют на сооружение только единожды, в определенный период времени, иногда весьма продолжительный. Многократные нагрузки непрерывно повторяются, причем интенсивность их действия и интервалы между ними могут изменяться.

К однократным нагрузкам, вызывающим однократные деформации, следует отнести:

  • равномерную осадку сооружения в целом;
  • неравномерную осадку элементов или отдельных частей сооружения;
  • усадку, вызванную процессами схватывания, твердения и вызревания бетона/цементного раствора;
  • пластические деформации (например, прогиб конструкций, изгиб стоек и т.п.), вызванные статическими воздействиями;
  • ползучесть в элементах сооружения, являющуюся следствием длительных статических воздействий.

К многократным нагрузкам, которые приводят к возникновению циклических деформаций, можно отнести:

  • динамические воздействия;
  • набухание или высыхание материалов при изменении их влажности;
  • химические взаимодействия материала конструкции и агрессивных сред, которые также можно отнести и к однократным причинам;
  • изменения объема конструкции от колебаний температуры окружающей среды.

При этом следует учитывать:

  • усадку бетонов/цементных растворов перекрытий или стяжек;
  • изменение относительной влажности воздуха;
  • химические взаимодействия, происходящие в бетоне/цементном растворе;
  • колебания температуры окружающей среды;
  • явление ползучести бетона/цементного раствора.

Влияние усадки

Одной из основных причин, вызывающих деформации конструкции, которые не зависят от нагрузки на сооружение, является усадка бетона/цементного раствора, его способность  к изменению объема в процессе твердения, приводящая к возникновению внутренних напряжений.

Усадка — комплексное явление, существуют не одна, а как минимум четыре разновидности усадки:

  • пластическая,
  • гидратационная,
  • гидравлическая,
  • термическая.

Иногда к этим разновидностям еще добавляют усадку от карбонизации.

Пластическая или первоначальная усадка наблюдается в бетонной смеси после ее укладки (до начала схватывания). В течение этого периода вода затворения еще химически не связана с составляющими цемента, и в этой связи могут наблюдаться два физических процесса — испарение воды с открытой поверхности и осаждение твердых частиц смеси с постепенным уплотнением.

Этот вид усадки достаточно хорошо изучен. Величина пластической усадки зависит от состава бетонной смеси, свойств использованных материалов и внешних условий. Так, например, применение жестких бетонных смесей с низким водоцементным отношением, использование водоудерживающих добавок, значительное содержание крупного заполнителя, высокий процент армирования, защита поверхности от испарения воды могут уменьшить конечную величину пластической усадки.

Гидратационная усадка или усадка при внутреннем обезвоживании бетона вызывается тем, что объем образовавшихся гидратов цементного теста меньше объема безводных веществ и воды. Иногда этот вид усадки называют контракционной деформацией или контракцией. Этот вид усадки развивается в период интенсивного протекания химических реакций между цементом и водой и не столько изменяет внешние размеры изделия, сколько способствует изменениям поровой структуры материала, приводя к образованию воздушных пор и уменьшению объема пор, занимаемых водой.

Таблица 1. Показатели деформаций от увлажнения основных
строительных материалов

Материал

Мм/м

Бетон

0,15 – 0,18

Шлакобетон

0,16

Цементный раствор

0,20

Гидравлическая усадка, или, как ее еще называют, влажностная усадка, проявляется после схватывания бетона и вызывается испарением влаги и ее перераспределением в скелете цементного камня. Гидравлическая усадка проявляется гораздо медленнее, чем пластическая, а ее величина значительно меньше. Эта разновидность усадки зависит от продолжительности и условий выдерживания бетона, вида составляющих бетонной смеси, их расхода, размера инертных заполнителей, формы конструкции, процента армирования.

Термическая усадка происходит в раннем возрасте и вызывается понижением температуры бетона, когда вслед за его разогревом в результате экзотермии при гидратации цемента следует охлаждение, а также в результате воздействия температуры окружающей среды, колебания которой могут быть значительными. Обе эти причины часто сочетаются. Эту разновидность усадки зачастую игнорируют, и деформации бетона, обусловленные ею, объясняют другими причинами. В целом термическая усадка, когда она складывается с усадкой гидравлической, превышает значение теплового расширения бетона/цементного раствора.

Конструкции деформационных швов

В общем виде деформационный шов представляет собой специально сформированный зазор

между двумя или более сопрягаемыми элементами конструкции, который загерметизирован в соответствии с требованиями эксплуатации.

Основной элемент любого деформационного шва — рабочий зазор, в котором при эксплуатации реализуются деформации сопрягаемых элементов конструкции. Кроме того, в конструкции деформационного шва различают его протяженность и форму, а также внутренние боковые поверхности шва и кромки шва. Уплотнительный элемент деформационного шва характеризуется таким параметром, как глубина заполнения, значение которого играет важную роль при использовании мастик и герметиков.

Устройство деформационных швов

Деформационные швы устраиваются в кровле:
— если в этом месте проходит деформационный шов здания;
— если длина здания или ширина более 60 м;
— в местах стыка кровельных оснований с разными коэффициентами линейного расширения (бетонные плиты перекрытия, примыкающие к основанию из оцинкованного профлиста);
— если кровля примыкает к стене соседнего здания;
— в местах изменения направления укладки элементов каркаса здания, прогонов, балок и элементов основания кровли.

Таблица 2. Наибольшие расстояния между деформационными швами в железобетонных конструкциях в м., допускаемые без предварительного расчета.

Вид конструкции

Внутри отапливаемых
 зданий или в грунте, м

В открытых сооружениях и в неотапливаемых зданиях, м

Сборные каркасные, в том числе смешанные с металлическими и деревянными перекрытиями

60

40

Сборные сплошные

50

30

Монолитные каркасные из тяжелого бетона

50

30

То же, из легкого бетона

40

25

Монолитные сплошные из тяжелого бетона

40

25

То же, из легкого бетона

30

20

Выравнивающие стяжки из цементно-песчаных и асфальтобетонных смесей, по ВСН 35-77, следует разделять температурно-усадочными швами шириной до 5 мм на участки:

  1. Для цементно-песчаных стяжек размером не более 6х6 м;
  2. Для асфальтобетонных стяжек не более 4х4 м.

Чтобы снизить вероятность протечки кровли через деформационный шов, необходимо сформировать уклоны таким образом, чтобы вода уходила в стороны от деформационного шва.

В случаях, если деформационный шов устраивается в местах водораздела, и движение потока воды вдоль шва невозможно, или уклоны на кровле более 15%, то при устройстве допустимо использовать упрощенную конструкцию деформационного шва.

Деформации здания компенсирует верхний минераловатный утеплитель. В кровлях с основанием из профлиста необходимо закреплять основные слои кровельного материала на краях деформационного шва.

Температурно-деформационный шов со стенками из легкого бетона или штучных материалов может устанавливаться в кровлях с бетонным основанием или из ж/б плит.

Стенка температурно-деформационного шва устанавливается на несущие конструкции. Край стенки температурно-деформационного шва должен быть выше поверхности кровельного ковра на 300 мм. Шов между стенками должен быть не меньше 30 мм.

Металлический компенсатор, устанавливаемый в температурно-деформационном шве, не может служить пароизоляцией. Необходима укладка дополнительных слоёв пароизоляционного материала на компенсатор.